Fault displacement hazard at natural gas storage fields-a future research and regulatory direction:
with a discussion of the Santa Susana fault displacement hazard at the Aliso Canyon gas storage field,

southern California
Thomas L. Davis, Geologic Maps Foundation, Inc., Ventura, CA
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Overview of gas storage fields and wells.
The ACGSF leak and impact: a benchmark.

Coseismic fault displacement across gas wells
are a hazard and risk to well integrity.
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The SSF is a fault displacement hazard.

O Important to note:
v" The recent massive methane leak at Aliso is probably not due to
movement on the SSF: no other wells leaked and there was no nearby
Mitigation-what are the options? earthquake at the initiation of the leak.
v' CA Division of Oil & Gas and Geothermal Resources (DOGGR): “The
independent investigations and root cause analysis are still pending.”

Summary-what to get out of this talk.

Recommendations for rulemaking presently
being considered.



Overview of gas storage fields and wells-key things to consider.
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Essential energy supply.

US has +400 gas storage fields.

Natural gas currently meets nearly 30% of U.S. energy needs (mostly power generation and heating).

Natural gas storage fields provide quick access to large volumes of gas during periods of high demand.

Low carbon impact; considered a bridge energy source from fossil fuels to renewable sources.

However, methane is a much more effective heat-trapping gas than carbon dioxide and has the potential to negate much
of the nation’s carbon dioxide reduction efforts (IPCC, 2014).

Guiding idea for siting storage fields: American Petroleum Institute RP 1171 (API, 2015): “Depleted hydrocarbon
reservoirs are candidates for natural gas storage because the reservoir integrity has been demonstrated over geologic
time by hydrocarbon containment at initial pressure conditions." True, but gas wells at storage reservoirs have not
existed over geologic time.

Importance of well integrity: there is no way to quickly draw-down a gas storage field because of their high pressure
and large volume.

Types of natural gas storage fields
in the US (EIA, 2015)

* Depleted Fields
i Aquifers
& Salt Caverns

A Saltcaverns
B Mines
C Aquifers

D Depleted reservoirs

Distribution of natural gas storage fields in the lower 48 states (PNP E Hard-rock caverns
Petroleum) Source: PB-KBB, inc., enhanced by EIA.



« The ACGSF leak and impacts: a benchmark
(modified from DOE, 2016).

0  SS-25 well completed in 1954 as an oil producer and
converted to a gas storage well in 1973.

0 Gas injected and withdrawn through tubing and casing
(single barrier protection).

0 Leak was initially ~2 MMcfd (1300 metric tons of methane
per day, the blue flows lines) and created a 1x4 ft surface
vent.

0  Eight surface control attempts failed. These top Kills
involve pumping heavy drilling muds, fluids, and
additional material down the tubing (brown flow lines).

0  Top kill attempts caused erosion and expansion of the
vent around the wellhead.

0 Leak went from 2 to 25-60 MMcfd (DOE, 2016).

o0  Hill side vents created. B o S e
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The ACGSF leak and impacts: a benchmark (modified from Harris & Walker, 2016).
~8,000 residents were relocated and two schools closed.

~ 5 Bcf of methane released to the atmosphere.

Operator has spent $700+ MM dealing with the leak.

25 + class action suits against the operator were active.

Substantial cost of the lost commodity (methane).

Up to 109,000 metric tons of methane that was responsible for 20% of California’s annual methane
emission (CARB, 2016).
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Relief well #1 (background) Relief Well #2 (foreground)




Coseismic fault displacement across gas storage wells are a hazard and risk to well integrity-
the SSF case.

0 It's basic geology to conclude that a fault that ruptures at the surface during a seismic event also moves at depth as the displacement
derives from a deeper earthquake source.

o Highly fractured rocks in hanging-wall of the SSF are potential gas migration pathways.
o Fault zone is a potential gas migration pathway.
o Shallow intersections of well and SSF make gas migration to the surface more likely.
o Fault displacement hazard analysis of gas storage wells would be very useful.
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The SSF is a fault displacement hazard-fault characterization:
0  SSF merges with active faults along strike.
0 Areais very tectonically active with the 1971 Sylmar and 1994 Northridge EQs.
0 Recent movement history of the SSF is unclear due to poor surface exposures and the various geotechnical reports are
conflicting and limited in scope.
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The SSF is a fault displacement hazard-fault characterization:
(0}

The State of California recognizes (CGS, 2003), via the Alquist-Priolo Act (AP), that the eastern segment of the SSF is an
earthquake and surface rupture hazard based on surface displacement during the 1971 Sylmar earthquake (M,,=6.4-6.7)

Surface developers have been required to do geologic studies of the SSF and mitigate for surface rupture along its entire
length since 1974 as there are observations indicating late Quaternary and in places Holocene displacement

Explanation

»

SYMBOL EXPLANATION

Fault traces on land are indicated by solid ines where well localed,
by dashed lines where approximately located or inferred. and by
dotted lines where concealed by younger rocks or by lakes or bays.
o Fault traces are queried where continuation or existence is
uncerain. All offshore faults based on seismic reflection profile
T 7 Campon records are shown as solid lines where well defined, dashed where
\ Clarita ; T inferred, quenied where uncertain.

FAULT CLASSIFICATION COLOR CODE
{Indicating Recency of Movement)

Fault along which historic (last 200 years) displacement has occumed.
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A triangle to the right or left of the date indicates termination point of
observed surface displacement. Solid red triangle indicates known

location of rupture termination point. Open black triangle indicates
uncertain or estimated location of rupture termination point
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Holocene fault displacement (during past 11,700 years) without
historic record.

———

Mlssloﬂ R \ < Late Quaternary fault displacement (during past 700,000 years)

ILLS

————sassans. s

Quaternary fault (age undifferentiated),
[E] 348255118735 Owgrees

P
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The SSF is a fault displacement hazard-slip rates:

Avg Slip Rates
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The SSF is a fault displacement hazard-slip rates:
o0 \Various slip rate estimates for the SSF (all of these are very high rates).
o 7.0-9.8 mml/yr, Yeats (2001). This is nearly a plate boundary rate and roughly 1/3 to 1/2 the convergence
rate of the entire western Transverse Ranges (17.6-26.5mm/yr, Namson and Davis, 1988).
o0 2015 Third Uniform California Earthquake Rupture Forecast, or “UCERF3” is 2.9 mm/yr.

FAULTS SLIP RATE SOURCE
Cucamonga 1.5 UCERF3
Elysian Park (upper) 1.9 UCERF3
Garlock (west) 6.8 UCERF3
Hollywood 0.9 UCERF3
Mission Hills 13 UCERF3
Northridge Hills 1.3 UCERF3
Oak Ridge (onshore) 4.0 UCERF3
Puente Hills (all alt) 0.9 UCERF3
Raymond 2.0 UCERF3

San Andreas (Big Bend) 34.0 UCERF3

San Andreas (Mojave N) 34.0 UCERF3

San Cayetano 6.0 UCERF3

San Gabriel 0.4 UCERF3
Santa Susana (Huftile and Yeats, 1996) 6.0 Huftile and Yeats (1996)
Santa Susana (Yeats, 2001) 8.4 Yeats (2001)
Santa Susana (SCEDC) 6.0 SCEC (2016)
Santa Susana (Petersen & Wesnousky) 5.0 Petersen & Wesnousky (1994)
Santa Susana 2.9 UCERF3
Santa Ynez (East) 2.0 UCERF3
Sierra Madre (San Fernando) 2.0 UCERF3

Verdugo 0.4 UCERF3



Geology of the ACGSF.

o
o

o

Dip cross section shows shallow thrust fault geometry of the SSF (modified from Lant ,1977, cross section E-E’).
Section shows the SSF steepening with depth and its large amount of reverse displacement during the
Quaternary.

Shallowest well intersections are along the southern margin of the storage field and nearby the SSF reaches the
surface as two major fault splays separated by a block of highly-fractured Modelo Formation.

Upper Saugus locally derived and age estimates based on magnetic stratigraphy (Levi and Yeats, 1993).

SSF acquired 4.9-5.9 km of slip during the past 600,000-700,000 yrs (Yeats, 2001).
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Geology of the ACGSF.

ACGSEF is an old oil field acquired for gas storage in 1972 (Dauvis, et al. 2015). Green fill shows the extent of

the original oil field.

* Hydrocarbon trap is a faulted anticline with an up-dip seal provided by the Ward and Roosa faults (red lines).
» Gas storage reservoir (old oil reservoir) is located below the SSF and all 114 gas storage wells cross the

fault to reach the reservaoir.
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« Summary-what to get out of this presentation:
o Afault rupture hazard at the surface is a rupture hazard in the subsurface.

o There is no quick way to draw-down a gas storage field . Most gas storage
fields have large volumes of methane at high pressures.

o The shallower the well and fault intersections the more likely well casing leaks
will migrate to the surface.

o0 The SSF is a recognized and regulated fault rupture hazard at the surface with a
high slip rate. All 114 gas storage wells cross SSF at shallow depths.

o There are significant global, regional, and local impacts from the release of
massive amounts of methane to the atmosphere:

v' Globally: Methane is a much more effective heat-trapping gas than carbon dioxide
and has the potential to negate much of the nation’s carbon dioxide reduction efforts
(IPCC, 2014).

v" Regionally: The ACGSF leak accounted for 20% of California’s annual methane
emission (CARB, 2016).

v Locally: Storage fields such as the ACGSF that are located near large urban areas
have significant safety, health, environment, legal, and financial risks.



* Mitigation:

o

O o0 0o

Why are gas storage fields located near urban areas? Gas moves slowly through pipelines and storage
fields located near the customers are favored to meet customer demand.

However, storage fields near urban areas have the potential for significant impacts and risks.

Avoid siting of gas storage wells and fields across active faults.

In southern California the depleted offshore oil fields are probably the safest locations for gas storage fields.
Well design:

Gravel packs across fault zones.

Install downhole safety valves above storage zones and below intersecting faults.

Entire length of production casing cemented to hole wall-no open annulus avenues for gas migration.
Cork-screw coiled tubing across fault zone?

Is there a favorable orientation for boreholes crossing fault zone?

A VANE N NN

Gravel packs have been used across aseismic faults in oil fields Installation of downhole shut-off valves (DHSVs) on wells have
(Ershagi, 2016, oral communication). been proposed at the ACGSF and other fields but the

reliability of these valves is unclear especially during a nearby
Production tubing earthquake. DOE and DOT have recommended doing a cost

_ _ and benefit analysis of DHSVs (DOE, 2016).
Production casing

. Hydraulic
control line
to surface

Gravel-pack packer

[ Hydraulic pressure
bled off to close valve

Gravel placed in
casing and perforations

| Control sleeve

Fail-safe spring
mechanism
Flapper

Gravel-pack screen

Sump packer

Open Closed



Recommendations:

(0]

(0]

Need more geologic input.

New state and federal regulations for gas
storage wells crossing potentially active faults
should require FDHA (or PFDHA).

Alquist-Priolo (AP) Act: Statutory and regulatory
role of Act should be extended to subsurface
fault rupture hazards.

DOGGR Discussion Draft for gas storage fields
in CA: includes identification of active faults as a
hazard and require arisk management plan.

California Public Utilities Commission CPUC:
There will be new requirements for underground
gas storage projects and performing FDHA (or
PFDHS) on storage fields with active faults
should be included.

American Petroleum Institute (API),
Recommended Practices 1171: RP should be
revised to include more about the hazard, risk,
and mitigation of active faults.

Pipeline and Hazardous Materials Safety
Administration (PHMSA-DOT). PHMSA already
regulates surface pipelines crossing active faults
so why not extend this role to the subsurface?
PIPES Act of requires PHMSA to issue, within
two years, minimum safety standards for
underground natural gas storage facilities.

Sensitivity for Site Location (Wells & Kulkarni, 2014)

A comparison of simplified PFDHA results and full PFDHA
results for the Hayward fault that includes the effect of site location in a model
for distribution of slip along the rupture.
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Trans-Alaska Pipeline at the Denali Fault showing major design features. Fault movement
and intense ground shaking were accommodated by zigzagging the pipeline and leaving it
free to slide.



There is an important role for petroleum geologists and the oil and gas industry to play in
earthquake hazards evaluations by virtue of their unique subsurface expertise and
familiarity with deeper data sets and modern mapping and structural techniques.

3D surface map of an oil field showing
wells, geologic units, and faults
(Wintershall, 2016).

Lithotect cross section of the ACGSF
showing well and surface data.
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